251 research outputs found

    Light focusing in the Anderson Regime

    Full text link
    Anderson localization is a regime in which diffusion is inhibited and waves (also electromagnetic waves) get localized. Here we exploit adaptive optics to achieve focusing in disordered optical fibers in the Anderson regime. By wavefront shaping and optimization, we observe the generation of a propagation invariant beam, where light is trapped transversally by disorder, and show that Anderson localizations can be also excited by extended speckled beams. We demonstrate that disordered fibers allow a more efficient focusing action with respect to standard fibers in a way independent of their length, because of the propagation invariant features and cooperative action of transverse localizations

    Bibliometric indicators: the origin of their log-normal distribution and why they are not a reliable proxy for an individual scholar’s talent

    Get PDF
    There is now compelling evidence that the statistical distributions of extensive individual bibliometric indicators collected by a scholar, such as the number of publications or the total number of citations, are well represented by a Log-Normal function when homogeneous samples are considered. A Log-Normal distribution function is the normal distribution for the logarithm of the variable. In linear scale it is a highly skewed distribution with a long tail in the high productivity side. We are still lacking a detailed and convincing ab-initio model able to explain observed Log-Normal distributions-this is the gap this paper sets out to fill. Here, we propose a general explanation of the observed evidence by developing a straightforward model based on the following simple assumptions: (1) the materialist principle of the natural equality of human intelligence, (2) the success breeds success effect, also known as Merton effect, which can be traced back to the Gospel parables about the Talents (Matthew) and Minas (Luke), and, (3) the recognition and reputation mechanism. Building on these assumptions we propose a distribution function that, although mathematically not identical to a Log-Normal distribution, shares with it all its main features. Our model well reproduces the empirical distributions, so the hypotheses at the basis of the model are not falsified. Therefore the distributions of the bibliometric parameters observed might be the result of chance and noise (chaos) related to multiplicative phenomena connected to a publish or perish inflationary mechanism, led by scholars' recognition and reputations. In short, being a scholar in the right tail or in the left tail of the distribution could have very little connection to her/his merit and achievements. This interpretation might cast some doubts on the use of the number of papers and/or citations as a measure of scientific achievements. A tricky issue seems to emerge, that is: what then do bibliometric indicators really measure? This issue calls for deeper investigations into the meaning of bibliometric indicators. This is an interesting and intriguing topic for further research to be carried out within a wider interdisciplinary investigation of the science of science, which may include elements and investigation tools from philosophy, psychology and sociology

    Observation of migrating transverse Anderson localizations of light in nonlocal media

    Full text link
    We report the experimental observation of the interaction and attraction of many localized modes in a two dimensional (2D) system realized by a disordered optical fiber supporting transverse Anderson localization. We show that a nonlocal optically nonlinear response of thermal origin alters the localization length by an amount determined by the optical power and also induces an action at a distance between the localized modes and their spatial migration. Evidence of a collective and strongly interacting regime is given

    Hyperuniformity in amorphous speckle patterns

    Get PDF
    Hyperuniform structures possess the ability to confine and drive light, although their fabrication is extremely challenging. Here we demonstrate that speckle patters obtained by a superposition of randomly arranged sources of Bessel beams can be used to generate hyperunifrom scalar fields. By exploiting laser light tailored with a spatial filter, we experimentally produce (without requiring any computational power) a speckle pattern possessing maxima at locations corresponding to a hyperuniform distribution. By properly filtering out intensity fluctuation from the same speckle pattern, it is possible to retrieve an intensity profile satisfying the hyperuniformity requirements. Our findings are supported by extensive numerical simulations.Comment: 13 pages, 7 figure

    Tunable degree of localization in random lasers with controlled interaction

    Get PDF
    We show that the degree of localization for the modes of a random laser (RL) is affected by the inter mode interaction that is controlled by shaping the spot of the pump laser. By experimentally investigating the spatial properties of the lasing emission we infer that strongly localized modes are activated in the low interacting regime while in the strongly interacting one extended modes are found lasing. Thus we demonstrate that the degree o localization may be finely tuned at the micrometer level

    Active subnanometer spectral control of a random laser

    Get PDF
    We demonstrate an experimental technique that allows to achieve a robust control on the emission spectrum of a micro random laser and to select individual modes with sub-nanometer resolution. The presented approach relies on an optimization protocol of the spatial profile of the pump beam. Here we demonstrate not only the possibility to increase the emission at a wavelength, but also that we can isolate an individual peak suppressing unwanted contributions form other modes

    The mode-locking transition of random lasers

    Get PDF
    The discovery of the spontaneous mode-locking of lasers, i.e., the synchronous oscillation of electromagnetic modes in a cavity, has been a milestone of photonics allowing the realization of oscillators delivering ultra-short pulses. This process is so far known to occur only in standard ordered lasers with meter size length and only in the presence of a specific device (the saturable absorber). Here we demonstrate that mode-locking can spontaneously arise also in random lasers composed by micronsized laser resonances dwelling in intrinsically disordered, self-assembled clusters of nanometer-sized particles. Moreover by engineering a novel mode-selective pumping mechanism we show that it is possible to continuously drive the system from a configuration in which the various excited electromagnetic modes oscillate in the form of several, weakly interacting, resonances to a collective strongly interacting regime. By realizing the smallest mode-locking device ever fabricated, we open the way to novel generation of miniaturized and all-optically controlled light sources

    Hopfield-like open channel retrieval for disordered optical media

    Full text link
    The measurement of the optical Transmission Matrix (TM) enables to access "open channels": input patterns, specific to each scattering structure, capable to deliver very high transmission. Various approaches, based either on multiple interferometric measurements or on systematic random testing of incident wavefronts, enable to estimate the inputs required to excite these open channels. Here, we provide for the first time an approach enabling the complete and reference-less retrieval of the open channels. It is based on the full mapping all the pairwise interference terms resulting from all the input modes couples. We show that these interference terms are organized into a bi-dyadic coupling matrix whose eigenvalues enables to access the open channel. A disordered optical system, is thus behaving exactly like an Hopfield neural network, where a specific input vector (an eigenvalue of the neurons' coupling matrix) enables to retrieve a specific memory pattern. The proposed Hopfield like open-channel-retrieval approach, enables to reach almost 100%\% of the theoretically expected value of the Intensity. Moreover employing a digital micromirror device to modulate light, we demonstrate high speed laser scanning at the back of a disordered medium.Comment: 6 pages, 5 figure
    • …
    corecore